传送门:https://ac.nowcoder.com/acm/contest/7329/F
题意
求解:$f_i\;\;mod\;\;998244353\;\;(1\leq i\leq n)$。
思路
前置技能:$\mu*I =\varepsilon \;\;\;\; \sigma _q=id_q*I\;\;\;\;F(n)=\sum_{dn}\mu(i)f(\frac{n}{d})$
$$\sum_{in}f(i)\sigma_p(\frac{n}{i})=\sigma _q(n)\;\;->\;\;(f*\sigma_p )n=\sigma_q(n)$$
先将$\sigma$ 分解:
$$(f*id_p*I)n=(id_q*I)n$$
左右都乘上$\mu:$
$$(f*id_p)n=id_q(n)$$
$$\sum_{in}f(i)\frac{n^p}{i^p}=n^q$$
$$\sum_{in}\frac{f(i)}{i^p}=n^{q-p}=id_{q-p}(n)$$
反演得:
$$\frac{f(n)}{n^p}=\sum_{in}\frac{\mu(i)*n^{q-p}}{i^{q-p}}$$
$$\frac{f(n)}{n^q}=\sum_{in}\frac{\mu(i)}{i^{q-p}}$$
因为积性函数卷积性函数之后还是积性函数,所以能得到$\frac{f(n)}{n^q}$是积性函数。我们考虑与n互质的d,计算$f(d^k)$并且由莫比乌斯函数的性质得:
$$\frac{f(d^k)}{d^{kq}}=1-\frac{[k\ne 0]}{d^{q-p}}$$ $(根据上式,只有i=1或d时才\mu(i)满足,其他都是0)$
$所以再来看n,由基本算数定理得:n=p_1^{k_1}p_2^{k_2}…p_m^{k_m},即:$
$$\frac{f(n)}{n^q}=\frac{f(p_1^{k_1})}{p_1^{qk_1}}\frac{f(p_2^{k_2})}{p_2^{qk_2}}…\frac{f(p_m^{k_m})}{p_m^{qk_m}}$$
$$\frac{f(n)}{n^q}=\prod_{dn \&\&d\;is\;a\;prime}(1-\frac{1}{d^{q-p}})$$
提前用欧拉筛处理$f(p^k)$即可,注意g数组的含义,因为当$i%prime[j]=0$时,$prime[j]$已经是$prime[j]*i$的因子的,而$f[i]$和$f[i*prime[j]]$两者之间的区别就是$prime[j]^q$,这还是比较难想到的。
Code(477MS)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
| ##include <bits/stdc++.h>
using namespace std;
typedef long long ll; typedef long double ld; typedef pair<int, int> pdd;
##define INF 0x7f7f7f ##define mem(a, b) memset(a , b , sizeof(a)) ##define FOR(i, x, n) for(int i = x;i <= n; i++)
const ll mod = 998244353;
const int N = 1e7 + 10;
ll quick_pow(ll a, ll b) { ll ans = 1; while(b) { if(b & 1) ans = ans * a % mod; a = a * a % mod; b >>= 1; } return ans % mod; }
int prime[N]; bool is_prime[N]; int cnt;
ll q, p, n; ll f[N], g[N];
void Eluer() { is_prime[1] = is_prime[0] = true; f[1] = 1; for(int i = 2;i < N; i++) { if(!is_prime[i]) { prime[cnt++] = i; g[i] = quick_pow(i, q); f[i] = (g[i] - quick_pow(i, p)) % mod; } for(int j = 0;j < cnt && prime[j] * i < N; j++) { is_prime[i * prime[j]] = true; if(i % prime[j] == 0) { f[i * prime[j]] = f[i] * g[prime[j]] % mod; break; } f[i * prime[j]] = f[i] * f[prime[j]] % mod; } } }
void solve() { cin >> n >> p >> q; Eluer(); ll ans = 0; for(int i = 1;i <= n; i++) { f[i] = (f[i] % mod + mod) % mod; ans ^= f[i]; } cout << ans << endl; }
signed main() { ios_base::sync_with_stdio(false); ##ifdef FZT_ACM_LOCAL freopen("in.txt", "r", stdin); freopen("out.txt", "w", stdout); signed test_index_for_debug = 1; char acm_local_for_debug = 0; do { if (acm_local_for_debug == '$') exit(0); if (test_index_for_debug > 20) throw runtime_error("Check the stdin!!!"); auto start_clock_for_debug = clock(); solve(); auto end_clock_for_debug = clock(); cout << "Test " << test_index_for_debug << " successful" << endl; cerr << "Test " << test_index_for_debug++ << " Run Time: " << double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl; cout << "--------------------------------------------------" << endl; } while (cin >> acm_local_for_debug && cin.putback(acm_local_for_debug)); ##else solve(); ##endif return 0; }
|
本文作者:jujimeizuo
本文地址: https://blog.jujimeizuo.cn/2020/10/03/nowcoder-practice69-f/
本博客所有文章除特别声明外,均采用 CC BY-SA 3.0 协议。转载请注明出处!